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Optimal Boussinesq model for shallow-water waves interacting with a microstructure
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In this paper, we consider the propagation of water waves in a long-wave asymptotic regime, when the
bottom topography is periodic on a short length scale. We perform a multiscale asymptotic analysis of the full
potential theory model and of a family of reduced Boussinesq systems parametrized by a free parameter that is
the depth at which the velocity is evaluated. We obtain explicit expressions for the coefficients of the resulting
effective Korteweg—de Vries (KdV) equations. We show that it is possible to choose the free parameter of the
reduced model so as to match the KdV limits of the full and reduced models. Hence the reduced model is
optimal regarding the embedded linear weakly dispersive and weakly nonlinear characteristics of the underly-
ing physical problem, which has a microstructure. We also discuss the impact of the rough bottom on the
effective wave propagation. In particular, nonlinearity is enhanced and we can distinguish two regimes de-
pending on the period of the bottom where the dispersion is either enhanced or reduced compared to the flat

bottom case.
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I. INTRODUCTION

The surface elevation of a body of fluid with a periodi-
cally varying bottom for two-dimensional flows has been the
subject of many papers in the past decades. Different
asymptotic regimes can be addressed. Nevertheless research
efforts have been mostly concentrated in the Bragg reso-
nance regime [1-7], namely a regime where the water wave-
length and the bottom wavelength are comparable. Linear
and weakly nonlinear (solitary) waves have been addressed
in these works. Very little work has been devoted to rapidly
varying topographies as well as for bottoms with abrupt
slope variations.

The objective of this paper is to describe the wave propa-
gation in a long-wave asymptotic regime, when the bottom
topography is periodic on a short length scale and has an
arbitrary slope profile. In [8] Rosales and Papanicolaou de-
rived an effective Korteweg—de Vries (KdV) equation by us-
ing a multiscale expansion technique on the potential theory
formulation of the problem. In [9] Craig et al. give an alter-
nate derivation of the effective KdV, by applying a perturba-
tion technique on the Hamiltonian system for the Euler equa-
tions for water waves. In addition, they consider both the
two- and three-dimensional cases in their analysis, and they
obtain effective Boussinesq equations that describe the mo-
tion of bidirectional long waves. However, the coefficients of
the effective KdV equations are not given explicitly in these
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works, but they are expressed as averages of solutions of
auxiliary problems. The first goal of our paper is to obtain
explicit expressions for the coefficients of the effective KdV
equation in the two-dimensional case, which will allow us to
discuss the impact of the rough bottom on the wave propa-
gation. Then, having these explicit KdV equations at hand,
we obtain an optimal Boussinesq system for shallow water
(long) wave interaction with a microstructure, here the rap-
idly varying topography.

Recently Nachbin has obtained a terrain-following Bouss-
inesq system that is a weakly nonlinear, weakly dispersive
approximation of the potential theory formulation in the
presence of a varying bottom [10]. This was obtained
through the use of a conformal mapping transformation in
order to change the coordinate system. In the new coordinate
system abrupt bottom variations of large amplitude can be
dealt with. This mapping strategy was also used in [5] for the
Bragg resonance case. Moreover this formulation represents
a dramatic reduction of the complexity of the problem, since
only one spatial terrain-following coordinate is (asymptoti-
cally) used and therefore the space dimension is reduced by
one compared to the potential theory equations. In this paper,
we show that is possible to obtain an effective KdV equation
from this simplified system without solving auxiliary cell
problems. This effective KdV equation has similar properties
as those obtained in [8,9] and allows us to consider more
general bottom profiles. For example, the profiles can be
discontinuous or even multivalued, with the additional ad-
vantage that explicit expressions are obtained for the coeffi-
cients of the effective KdV equation. This fact plays an im-
portant role in answering our first goal.

As we shall see, the reduced Boussinesq system presented
in this paper is parametrized by a free parameter, namely the
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depth at which the velocity is evaluated. The choice of this
free parameter is determined by the specification of the
physical properties that the reduced model is required to re-
produce with accuracy, when compared to the full potential
theory model. Different criteria may lead to different opti-
mized values for the free parameter [11-13]. Hence our sec-
ond goal in this paper is to show that it is possible to choose
the free parameter of our family of Boussinesq systems so
that the KdV limit of the reduced model is the same as the
KdV limit of the full potential theory model. Thus the re-
duced model is optimal regarding the embedded linear
weakly dispersive and weakly nonlinear characteristics of the
underlying physical problem, in the presence of a micro-
structure.

The paper is organized as follows. In Sec. II we formulate
the full potential theory. The reduced Boussinesq system is
presented in Sec. III. In Secs. IV and V we perform a mul-
tiscale analysis of the two models in the presence of a peri-
odic bottom and we derive the limit KdV equations. In par-
ticular, the optimization of the reduced Boussinesq model is
addressed in Sec. V E and the explicit expressions for the
coefficients of the effective KdV equation are discussed in
Sec. VF.

II. EQUATIONS OF MOTION

We are in a regime where the fluid dynamic problem is
governed by the Euler equations with a free surface at the top
of the fluid domain y=a#(x,7). The wave profile is described
by 7(x,1). Using the fact that the flow is incompressible and
irrotational the problem can be recast in terms of a velocity
potential ¢(x,y,t), such that the velocity field is given by
(i#,0)=V ¢. Following Rosales and Papanicolaou [8], the di-
mensionless nonlinear potential theory equations are

Bt ¢y, =0, in

with free surface conditions at y=an(x,?):

—\BH(xle) <y < anlx.1),

1

bef) +7=0,

¢,+§‘(¢i+

1
7+ a¢xnx_ IE(ﬁy:Ov

and a Neumann condition

EH'<5>¢X+ 6,=0
& &

along the highly variable topography described by
y=—VBH(x/€). The parameter « is the ratio of the typical
wave amplitude over the mean depth. It governs the strength
of the nonlinearity. The parameter B is the ratio of the
squared mean depth over the squared characteristic wave-
length of the wave. It governs the strength of the dispersion.
Finally the parameter ¢ is the ratio of the topographic length
scale over the characteristic wavelength. In other work by the
authors [14-21] the topography was taken as disordered and
modeled by a random process, and therefore the topographic
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length scale was the correlation length of the random pro-
cess. Of great interest is the case of solitary waves in the
presence of random topographies as considered by different
authors [14,17,19,22]. In this paper, the bottom has periodic
modulations and the topographic length scale can then be
defined as the period of the modulations.

In [10] a conformal mapping is used to map the rough
channel onto a flat strip. This is the same as changing vari-
ables from a Cartesian xy-coordinate system to an orthogonal
curvilinear one, namely in, say, & variables. This is done in
such a way that at the undisturbed free surface y=0 and {
=0 coincide. The topography now is along a ({=const)
curve. Since we are dealing with harmonic functions
(through the potential and the conformal map) it easily fol-
lows that in the curvilinear coordinates we have a new set of
orthogonal velocity components (u,v)=V(€,L,1), where
u(¢,¢,1) is a terrain-following component, namely tangent to
the {-level curves. Now the gradient is to be considered in
the new set of variables. As shown in [18], in the limit
a<<1, B<1, one obtains a family of Boussinesq systems for
the wave elevation 7 and the velocity component u that are
parametrized by the depth { at which the u-velocity compo-
nent is evaluated. The dispersion relations of these Bouss-
inesq systems depend on this parameter, which therefore
change in different interesting ways through a family of Padé
approximations from the original potential theory dispersion
relation. The choice of this parameter depends on the crite-
rion used to evaluate the quality of the reduced model com-
pared to the full potential theory. This issue is very important
from the physical oceanography point of view, as for ex-
ample shown in [18] regarding a waveform inversion proce-
dure. Namely, a time-reversal procedure is used in order to
find, say, a tsunami’s initial waveform through the recom-
pression of scattered data near the coast. As shown in [18]
the initial amplitude, regarding the tsunami’s waveform in-
version, is underestimated by the reduced model unless the
optimal parameter is used. In [11,12] different strategies are
used to optimize some prescribed linear and nonlinear physi-
cal characteristics of the reduced model, such as the phase
velocity for a given waveband, the linear shoaling character-
istics, or the nonlinear transfer of energy between harmonics.
To the best of our knowledge, this has only been done for
smoothly varying bottoms and shoaling scenarios. Here we
extend this type of model optimization to rapidly varying
topographies. As in [11,12] we use a free parameter, namely
the arbitrary depth parameter for the velocity variable, in
order to optimize the scattering properties of solitary waves.
This is done by matching the leading order KdV equations
arising from our reduced, variable coefficient, Boussinesq
system with that arising from the potential theory frame-
work. At the end we obtain an optimal Boussinesq system for
practical applications where a weakly nonlinear wave, such
as a solitary wave, interacts with rapidly varying topographic
features.

III. TERRAIN-FOLLOWING BOUSSINESQ SYSTEM

In this section, we present our reduced model that has the
form of a one-parameter family of Boussinesq equations that
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describe the evolution of surface waves in shallow channels
with arbitrary, rough topographies [10,18,23]:

1
M77t+[<1+%]>”} —g(y§—§>[M7]]§gz=0’ (1)
13
u+ B2 g =0 2
T et a M2 §+2()’o )Mggz— > (2)

where u is the terrain-following velocity evaluated at the 2
relative depth y, (yo=0 is the bottom, y,=1 is the free sur-
face) and 7 is the wave elevation. £ and ¢ are the space and
time coordinates. As mentioned above, system (1) and (2) is
derived from the full potential theory equations, in curvilin-
ear coordinates, in the asymptotics «<<1 and S<<1, and it
neglects terms of order O(a?), O(afB), and O(B?). The sys-
tem is a weakly nonlinear, weakly dispersive approximation
of the potential theory equations for an irrotational, incom-
pressible, and inviscid fluid. It is of interest to point out that
when £ — 0 the wavelength is increasing with respect to the
microscale and an averaging process takes place. Rather than
calling this a singular limit, we refer the reader to [17] where
it was shown that the change to curvilinear coordinates pre-
conditions the equations in the € —0 limit. Namely the ei-
genvalue band of the underlying linear (@=0) system re-
mains bounded in opposition to the Cartesian coordinates
case where the same linear analysis leads to an ever growing
interval containing the linear spectrum. Numerical experi-
ments that corroborate with this fact are presented in [17,18].
In particular in [18] random, multiply scattered signals pro-
duced by both the Boussinesq and the complete linear poten-
tial theory models are compared. An excellent agreement is
observed when the depth parameter is optimized numerically.
Here this optimal value will be found theoretically through a
weakly nonlinear multiscale analysis. Having this in mind
we keep the conformal mapping setup and work towards one
of our objectives: Similarly to [11,12] we compute an opti-
mal value for y, so that the reduced model retains certain
physical properties from the full Euler equations.

The variable coefficient M(§) is a smooth topography-
dependent function which appears as a consequence of our
change of variables from cartesian to curvilinear coordinates.
The Jacobian for the conformal mapping transformation is
defined as |J|= y§+ y? where the Cauchy-Riemann equations
have been used. For weakly nonlinear waves, hence to lead-
ing order in «, the Jacobian along the free surface can be
approximated as |J]| zy?(§,§=0) =M?*(¢) [10]. Therefore,
M(€) is called the metric term. It is computed directly from
the physical topography function H(x/&) which describes the
channel depth. The averaged depth has been normalized to 1.

In the derivation of Egs. (1) and (2) the topography profile
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FIG. 1. (Color online) Grating amplitude vs dimensionless co-
ordinate x: A slanted period grating (dashed) and the corresponding
periodic metric coefficient (solid) in the yB=1 regime. Only three
components of the grating with period 3/2 are shown for simplicity.

topography H(x/e)=1+n(x/e) is replaced by the metric co-
efficient [24]

7 (7 nlx(&.— VBe]
ME)=1+—= f ? 3)
+4V% ~“co

T = dé,
sh ﬁ(&o -&)

where (x,y)—(&,{) represents the, conformal map, coordi-
nate transformation such that M(&)=y(£,0) [10].

In this paper, we consider that n is a zero-mean periodic
function. The periodic orography H(x/&)=1+n(x/g) is trans-
formed through Eq. (3) into a periodic metric coefficient
M(§), which is a smoothed version of the original profile.
The smoothing is all the more important as S is larger. In
Sec. V we will perform a detailed analysis of the metric
coefficient in the case in which the orography is sinusoidal.
Here we briefly show by some illustrations that this transfor-
mation allows us to consider complicated, noncontinuous,
multivalued profiles. We use Driscoll’s Toolbox [25] to per-
form the numerical Schwarz-Christoffel mapping. In Figs. 1
and 2 we have a slanted grating, of amplitude half the total

depth, in two different regimes for the parameter . These
are to illustrate that the smaller the B more details from
n(x/e) are captured in the metric coefficient M(¢).

In this paper, we assume that the period of the bottom
fluctuations is small compared to the typical wavelength of
the wave. This means that we assume that & is a small di-
mensionless parameter. We also assume that the small non-
linearity and dispersion parameters can be written as

B=¢&By. (4)

Here ay (B,) is the normalized nonlinearity (dispersion) pa-

o= Szao,
H(x/e) =1+ n(x/e)

can be rapidly varying, discontinuous, or even multivalued,
and no mild slope condition is required. The only require-
ment is that there exists a constant C € (0, 1) such that ||r]|.,
=< C, which simply means that the bottom never goes above
the free surface. In the terrain-following system the physical

rameter which is a nonnegative number of order one. The
fact that 8 is of order & ensures that the convolution in Eq.
(3) occurs at the same length scale as the period of the fluc-
tuations, which represents the most interesting case. Note
that the kernel is of total mass one, hence tending to a Dirac
delta function as 8— 0. The fact that « is of order & ensures

046311-3



GARNIER, KRAENKEL, AND NACHBIN

PERIOD GRATING

4 v
1
1
1
3 p
1
1
1
1
2 \ ‘ ]
1 \ \
1 \ 1 \
1 \ 1 \
Ar METRIC COEFFICIENT 1 ' Vo
Vo Vo
o- ool PR \ -
dimensionless length —1 0 1 2

FIG. 2. (Color online) Grating amplitude versus dimensionless
coordinate x: Same slanted period grating (dashed) as in Fig. 1 and
the corresponding periodic metric coefficient (solid) in the

VB=0.5 regime. Only two components of the grating with period
3/2 are shown.

that the nonlinear and dispersive effects are of the same order
so that a nontrivial interplay between nonlinearity, disper-
sion, and periodic forcing can be expected. This regime is
appropriate for the existence of solitary waves and hence
also appropriate for the KdV parameter matching we will
perform in optimizing the above Boussinesq system. In the
next sections, we perform multiscale asymptotics with both
the full potential theory model and the reduced Boussinesq
system. We have two goals. The first one is to obtain explicit
expressions for the coefficients of the effective KdV equation
in the special case of sinusoidal topography, which will allow
us to discuss the impact of the a rough bottom on wave
propagation. The second one is to show that it is possible to
choose the depth parameter y, in order to match the KdV
limit of the full potential theory model and that of the Bouss-
inesq system.

IV. MULTISCALE EXPANSION FOR THE BOUSSINESQ
SYSTEM WITH A PERIODIC TOPOGRAPHY

In this section, we assume that the metric coefficient M (&)
is a rapidly-varying periodic function of the form

M =m<§) (5)

where m(s) is a smooth periodic function in s. In Sec. V we
shall obtain the explicit expression of the metric coefficient
m in the case in which the physical coefficient n is sinu-
soidal. Here we consider the asymptotic behavior of the so-
lution (7,u) of Egs. (1) and (2) as € —0 by analyzing the
multiscale expansion of the solution. We will see that the
effective behavior for times of order one is described by a
standard homogeneous wave equation. For times of order £ 2
we will obtain an effective system of partial differential

equations involving dispersion, nonlinearity, and periodic
forcing.
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A. Propagation times of order one

We look for an expansion of the form

7(t,é) = 770(1,5,5) +8771<t,§,§> T

u(t,é) = u0<t,§,§) + su1<t,§,§> P

where 7; and u; are periodic in s=§/& and the averages of 7,
and u, with respect to s are zero. Substituting into Egs. (1)
and (2) and collecting the terms with the same powers in &,
we obtain at order 7'

Mosz O, 7]0520,

which shows that the leading-order terms (7,,u,) do not de-
pend on s=¢/&. At order €°, we get

Bol » 1
Mo, + Uy + Uy, = 5\ 0T g s 0,=0,
o+ 7 + Mo, = 0.
By taking the average with respect to s, we obtain the com-

patibility equations:

()i, + 45, =0, (6)

u0t+ 7’0§:0’ (7)

where (-) stands for an average in s. This shows that (7, u)
obeys a standard wave equation with the effective velocity
v={m)""? in the (,&) variables. We can introduce the left-
and rightgoing modes A and B,

A= (m) o+ (m)Mug, B =(m) g — (m)™up.

They satisfy the two uncoupled transport equations
A +vA=0, B,-vB;=0,

and they are given by
A(t9§):A(t=09§_vt)s B(t,g):B(t:O,g'FUt)

Consequently, an arbitrary initial condition gives rise to two
waves A and B, one propagating to the right with velocity
+v and one propagating to the left with velocity —v. For
instance, an initial condition such that uy(r=0,¢)
=(m)25y(t=0, &) =(m)""*f(¢) generates a pure right-going

wave, that propagates without distortion for times of order
one:

ug(t,8) = (m) " f(E=v1), (8,6 = (M) (€= v1).

This result holds true for times of order O(1).

B. Propagation times of order £~2

We investigate the slow evolution of the solution (7,u)
for times of order £72 in the frame moving with the velocity
v. We look for an expansion of the form
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7(t,€) = go(€—vt, %) + 8771<§— vt,g,szt)

+ 827]2<§— vt,é,szt) + oo,
g

u(t,€) = uy(é—vt,e%) + 8u1<§— Ut,§,82t>
e

£
+82u2<§—vt,—,82t + e,
g

where 7; and u; are periodic in s=¢£/& and admit slow varia-
tions in 7=g%. We denote y=E&—vt. At order & we find that

1

0.2
—omany, +uy +ug + v?(yo— g)mssno)(:O,

—vug + + 1 = 0.
By taking the average in s, we get that v*(m)=1, which is
satisfied, and

7o = VU,

which means that the leading-order terms have the form of a
rightgoing wave. Hence, as expected, no reflection is gener-
ated by the homogenized bottom. Besides the corrections
(7, ,u;) are given by

B 1 _ _
M1=U|:ma—mX?0 y%_g 770X+u1’ m="7, (8)

where (i,,7,) do not depend on s and m, is the zero-mean
periodic function

ma(s) = i(s) = i, fiig(s) = f m(s) - (myds.
0

Note that {u,)=u; and {7,)=7,.
At order £ we obtain

sommyy iy Uy o+ ao”o’]o(i)y + U%()’S - %)[mnlx]m
=0,
ao”% 1 Bo, >
—vuy ot T(ﬁ); ?(yo - 1)u1w =0.

By taking the average in s, we obtain the compatibility equa-
tions

- U<m>7_71X+ b_l1X=O,

—vu; + 1 =
vy M, 0,
which are satisfied if
7]1=U171.

Besides, the corrections (7,,u,) have the form
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o 1
=0y B, - 23 1]

2
ay7y( 1 1 _
X (v - 1)mss770XX— 202 (%—<$>> + 7,

Uy = v(—mb+ %(y%— %)(m— <m>)> 7]0XX

2
a1 1 Bof » 1 = —
- v <m_<m>)+v|:ma_ 2<y0_3 myg 771X+"£27

where (7,,i1,) do not depend on s and m,, is the zero-mean
periodic function

s

my,(s) = i, (s) = (i), rﬁ;,(S)=f m,(s)ds.

0

Note once again that (u,)=i1, and {7,)=7,. In the following,
we denote 7,=7,— 7.
At order £? we obtain the system

1
m(m_— U772X) tuz +up + 010(;(’71“0 + 770”1))

N

1
&<y3 - §>[m(7zo,— v )ss

1
+ ao(”o’lo))(; 5

1

Bo( »
+5 (03 {2vlmmy Ji+vmny }=0,

2

ay(ug) Bo
_p20

2
-1
27’1’!2 2 (yO )

uy
MOT— Uu2X+ 773.? + 772X+ aouo($) +
N

X (u +2u, +u =0.
( OXXX 1)()(-v 2)(55)

By taking the average with respect to s, we get the compat-
ibility equations

(m)ymo_—v(mp, ) —vim)ip, +ii +%(77%)X<l>
X X m

Bolm) [ , l _
+v—/—— y0—3 nOXXX—O,

2
I 1 \ao(m), B
o it = — Y20 Nx PO 2 -
. W2X+772X+<m2> 202 2()’0 1)770XXX 0.

We multiply by v the first equation and add the second equa-
tion, which gives

2 1 1/ 1
5.~ v2<m7;2X> + ao(ﬂ(z))x(<%> + E<%><m>) + %ﬂom

=0.

Using the expression of 7, and the integration by parts for-
mulas (mmb>=—<m§> and (mmss)=—<m§>:
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2
<m7~;zx>=v2[—<mi>— B+ 13- 031

a 2
Oyox %(<$> - <#><m>),

X(Mf)} 7

we obtain the effective equation for #,:

2
2m) o + (770)<m>+{180 =

Bo{(m = (m)?) gﬁ(Z ;) ) <m§>} )
Y3 e a\073)00m D |y, =0
9)

This system is expressed in the variables (7,y), where 7
=gt is the slow time variable and Y is the traveling coordi-
nate moving with velocity v: y=§—vt. The metric coefficient
M(&) is defined by M(£)=y,£,0), which is also equal to
x¢(£,0) by the Cauchy-Riemann equation. Therefore, at the
undisturbed surface,

d—g(f 0)=M(9). (10)

This equation allows us to state the system in the original
variables (x,7). Indeed, M is a rapidly varying periodic func-
tion with mean (M)=1+(m), so that the effective equation
for 7, can be rewritten as the KdV equation

£

3a B
M, + (770)X & Mo =0 (11)

where X=x—v"t is the spatial coordinate in the frame mov-
ing with the velocity

v =(m)", (12)

and the nonlinearity and dispersion parameters are given ex-

plicitly by
a*—ao< >< "2, (13)

o 3 (=)
A ‘["°<’">5/{1 BT m)?
3 (m?)
B

The signs of the corrective terms can be discussed.

(i) As first noted in [8] and proved in [9], the effective
velocity is strictly smaller than one as soon as n(x) is peri-
odic and nonidentically zero. This means that the effective
depth is reduced and that the metric coefficient satisfies
(m)y<1.

(ii) The expression (13) allows us to claim that nonlinear-
ity is enhanced. Indeed, by Cauchy-Schwarz inequality, we
obtain

PHYSICAL REVIEW E 76, 046311 (2007)

1= (m"2m 12y < <m><l> - <m>1/2<m>1/2<l>
m m

and therefore
P L) &
m )

where we have used the fact that (m)<1 once again.

(iii) The sign of the dispersive correction 8 — /3, cannot
be determined without specifying the bottom topography
modulation. As we shall see in the next section, dispersion
can be enhanced or reduced depending on the period of the
modulation.

We recall that the effective parameters in [8,9] are defined
implicitly through the solution of auxiliary cell problems.
Below we present an example where we compute all param-
eters analytically. This is a useful example for validating the
capabilities of the present (reduced) Boussinesq model in
comparison with potential theory and also for discussing
quantitatively the impact of the periodic modulations of the
bottom on wave propagation. Moreover, the example pre-
sented below will allow us to compute explicitly the optimal
value for the depth parameter y,, so that the above KdV
equations matches the one that arises directly from the po-
tential theory model.

V. MULTISCALE EXPANSION FOR A SINUSOIDAL
OROGRAPHY

In this section, we consider that n(x) is the periodic sinu-
soidal function

n(x) = n, sin(kx),
with n; € (0,1) and £>0.

A. Asymptotic analysis of the conformal mapping

The metric coefficient M(&) is defined by Eq. (3). It is
given by the convolution of a smooth explicit kernel with the
composition of the periodic function n and the real part of
the conformal | map x(§,{) evaluated at the unperturbed bot-
tom —v ,8——\ Bye. The goal of this subsection is to get an
asymptotic expansion of x(&,—v ,308) as € — 0. This requires
are to analyze the conformal mapping introduced in [10,21].
We start by considering the Neumann problem

A&(x,y) =0, (15)
with the boundary condition §,=0 at y=0 and
=6+ \’%n’(x/s)fx =0 at y=- \“"ES[l +n(x/e)].
(16)

To solve this problem in the asymptotic e —0 regime, we
first replace the boundary condition at the random bottom
y=—VBye[1+n(x/e)] by a boundary condition at the flat bot-

tom y=—vBye:

kx
§+\'ﬂon1kcos< )gx Ri+R5,

with
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kx
Ri= \rﬂosnl sin
g

1
— k
XJ fw{x,— \yﬁos[l + 6n, sin(—x>]}dﬁ,
0 o &

. 2 . [ kx kx
R = Byenik sin| — |cos| —
€ €

1
Xf §xv{x,— \ﬂ%s[l + On, sin(lg)]}dﬁ.
0 h €

The corrective terms R] and R are the Lagrange remainders
of the Taylor expansions of &, and Vj,cos(kx/g)é, at
y=—Bye. The solution has the form

§(X,)’) = g()(x) + gl (X,y) + gr(x’y)’ (17)

where &,(x)=x is the identity describing the conformal map
in absence of a perturbation. Then & is the first order cor-
rective term satisfying the Laplace equation A& =0, the
boundary COHdlthH §1 =0 at y=0 and the boundary condi-
tion 51 +\Bon1k cos(kx/e)fo =0 at y——\',Bos The solution
is

fl(x,y)=\/ﬂ0—nl,8—cosh<%y>cos<l%). (18)

sinh(kV B)

At the unperturbed bottom y=—\e‘"%8 the correction &, has
the form

o
& (x,— \"ES) _ _VByme c s(k_x)

— CO
tanh(kV By) €

This result also shows that RT:O(n%) and R8=0(n?) which
means that the terms R; are higher-order corrections in Eq.
(16) in the case n;<<1. Inverting relation (17) at the undis-
turbed bottom, we have

x(&,— \'Eos) =& s:nlioh cos(kj> +0(end).

tanh(kV8,)
(19)

B. Expansion of the metric coefficient

We use the integril expression (3) of M(§) and the expan-
sion (19) of x(&,—VBye):
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. (kx(fo’_s\’ygo)>
» Ny sinl ———

]

MO=1+ dé,
VPoE < = coshz{ - §)J
2V Boe
)
" sin
-1+ i f € dgo
= —
4\!B08 —o0 COShz\‘ /77_ (go _ f)J
VBoe

" cos2<@)
J €

’7Tl’l1k
- 4 tanh(kV ) T o
anh(kVBy)e ) cosh{ = —§)J
2 0
+0(n}),
which gives
nlkwﬁ . [ k€ n%k\r’go
M(f) = P sm| — |- —— 7
sinh(kV B) € 2 tanh(kV By)
2,2
k 2k
_ kB Cos(—§> +0(d).  (20)
2 sinh*(k\ B,) &

This expansion exhibits several interesting features.
(i) The average physical bottom is one, but the average of
the metric coefficient is smaller than one:

—
n%k\" Bo

M)=1- 2 tanh(k\r’%)

+ O(n?)

The fact that a zero-mean varying random topography can
give rise to a non-zero average depth through the conformal
mapping was already observed in the numerical simulations
reported in [20] and analyzed in [19] in the case of a random
topography. This is reminiscent of the ellipticity of the con-
formal mapping problem, namely that the effect from one
boundary on the other side of the domain decays very rap-
idly. As a consequence, the surface wave is more sensitive to
the peaks of the rough bottom than to the valleys, which
gives a bias in the evaluation of the mean.

(ii) The fundamental fluctuations of the metric coefficient
are reduced compared to the ones of the topography. The
reductlon factor is kvBy/sinh(ky ,80) which is close to one
when kv ,80 is small and very small when kv /30 is large.

(iii) Second harmonic modulations are generated with an
amplitude that is smaller compared to the fundamental
modulations. Besides, we can expect the generation of a cas-
cade of harmonics when taking into account all terms of
order n]f

(iv) By Egs. (17) and (18) we have

—
d kA k
—g(x,O) =1- '“—\B# sin(—x> +0(n?)
dx sinh(kV 8,) €

which gives after inversion
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ﬂ _ nlk\“/ﬁ_() . (k_g) 2
dg(g,O) =1+ —sinh(k\r’g) sin A o(ny),

in agreement with Egs. (10) and (20).

C. Effective wave propagation

We can now apply the result of Sec. IV. We introduce the
parameters mg and m;:

3By nikVBy
my=1l-———+—, m=——. (21
2 tanh(kV By) sinh(kV 8,)

The averaged parameters needed to compute the coefficients
of the effective KdV equation (11) are given explicitly by

2
(my=mq, ((m—(m))?) = %

Km? m?
20 1 o _ M
<ms>——2 . (my) el

< 1> 1 ( m%)“”
— )= — 1__2 ,
m mo mo
L _L<1 m_%>—3/2
m2 _m(z) m(z, '

By collecting all terms of order n% we obtain

a_ M Bk
U = 1 - [N (22)
2 tanh(\Byk)
o« 2 Bk V1 Bk
— = 1 + — - — + - — s (23)
ap 2 [ \'sinh(VByk) 2 tanh(VByk)

# 2 2
ﬁ—=1+%Hi+1—ﬂ<y3—é>(yé—l)]

Bok? 4
VBok } (24)

( \/B_Ok ) 5
X . — -4 —
sinh(yByk) 2 tanh(\ Byk)

The main features of the effective system (that will be
discussed in more detail in Sec. V F) are (i) For a mean-zero
topography the velocity is reduced (v <1). (ii) The nonlin-
earity is enhanced (a” > a). (iii) The dispersion can be en-
hanced or reduced, depending on Bk>.

The dependence of the KdV’s dispersion parameter with
respect to y, is noticeable. Note that in the flat bottom case
[11,18] the depth parameter does not affect the cubic term of
the dispersion relation. Nevertheless, here it does affect the
cubic term in the presence of a rapidly varying periodic forc-
ing. Namely, the Boussinesq system leads an effective KdV
equation whose dispersion relation depends on y,. This is
very fortunate because it provides us with an optimization
procedure for the Boussinesq system, as follows. In the next
section, following [8], we will compute the coefficients of
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the effective KdV equation given directly by the long-
wavelength asymptotics of the potential theory in the pres-
ence of a rough bottom. We shall then show that the full
potential theory model and the reduced Boussinesq model
give the same averaged KdV equation if the parameter y, is
chosen in a suitable, hence optimal, way.

D. Multiscale expansion of the potential flow

In [8] the authors derive effective equations for the sur-
face elevation of gravity waves with a periodic bottom. They
apply a multiscale expansion technique to the potential flow
formulation of the problem expressed in the cartesian coor-
dinates. The averaged equation has the form of a KdV equa-
tion. The coefficients are not given explicitly, but must be
determined by solving auxiliary problems. More precisely,
the coefficients of the effective KAV equation (velocity, non-
linearity, and dispersion coefficients) are expressed as aver-
ages of the solutions of cell problems, which are elliptic
problems with Neumann boundary conditions in the strip
—1-n(x/e)<y=<0. We here reformulate the results in a way
that allows comparison with our own results. Besides, we
expand the effective coefficients obtained in [8] so that the
comparisons are quantitative, and this allows us to identity
the value of the parameter y, in our reduced model that fits
the results of the potential flow theory.

The elliptic cell problems are defined in terms of the op-
erators:

L=0dy,+ Byd,,in —1-n(z) <y <0,
‘Cb=ay+BOnl(Z)‘9z ony=-— 1 —I’Z(Z),

Li=d,ony=0,

where z=x/e. The cell, bottom, and surface averages are
defined by

1 (E 0
(a)= —f dzf dy a(z,y),
L 0 —1-n(z)

L
(a), = %J dzalz,-1-n(2)],
(

0

1 L
(a),= Zf dz a(z,0),

0

where L is the period of n(z).
First cell problem:

LA=0, L,A=-pn'(2),

LA=0,

with periodic dependence in z and cell average equal to zero.
If n(z)=n, sin(kz), then the solution can be expanded in pow-
ers of ng:
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cosh(k\Boy)
sinh(k\'go)
cosh(Zk\r’Ey)
sinhz(k\'%)

A(z,y) = \"Enl cos(kz)

2
- % sin(2kz) + O(n?).

The effective velocity, provided in [8], is given by
v=1-(A2+ B'A)),

which, by the results above, can be expanded as

ni i\ By

*2 _ _ __vYFv
2 tanh(k\s’E)

+0(n}). (25)

Second cell problem:

LB=-By2A,+1), L,B=-pPyn'(2)A,

and LB = - By,

with periodic dependence in z and cell average equal to zero.
The solution can be expanded in powers of n;:

2

B(z.y)=~ ﬁO(% +y+ %) + Bony Sin(kz){M

sinh(kw’%)
cosh(kv’%y)

2 3
- +n1by(z,y) + O(ny),
tanh sinh(kvﬁ) } P2y !

where the zero-frequency component of b, is

1 J L 30l B, ( 1)
| dzbyen =B =P (y4 ] o1
LJ, 2y 2 tanh(k\/%) Y 2

1
+—.
tanh?(k\ B, ]
Third cell problem:

LC=-By(2B,+A), L,C=-pyn'(z)B,

and £,C=- Byu*’A,

with periodic dependence in z and cell average equal to zero.

The solution can be expanded in powers of n;:

3/2 2 I

y* cosh(kv Byy)

C(z,y) =n, cos(kz) =L o
Y ! 2 sinh(k\,'go)

. —
4o v sinh(kVByy)  cosh(k\Byy)
O tanh sinh(k\B,)  sinh(k\3,)

X[mé”_ BB }
6 k tanh(kV B,) tanhz(k\r’%)

_ Bosinh(k\By) 1 00
k sinh(kvB,) v

The effective dispersion parameter, provided in [8], is
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3
B = ;(— (n'C),—v**(B),),

which, by the present results, can be expanded as

* 2 / /
3k 11ky
B =1+ ual \'BO_ - ‘B + O(n?)
Bo 2 | tanh*(kVBy) 2 tanh(kVB,)
(26)

Fourth cell problem:

LD=0, L,D=0, LD=-ap*A,,

with periodic dependence in z and cell average equal to zero.
The solution can be expanded in powers of n;:

kB, cosh[ky By(y + 1)]
sinhz(k\e"a)

D(z,y) = — ayn, cos(kz) + O(n%).

The effective nonlinearity parameter, provided in [8], is

1 24 2 2
o — + —(A —
“ v*<a0 3< s 3v*

<n,D>b> s
which can be expanded as

a 2 sinh(k\e’go) 2 tanh(kw/,Eo)

*

] +0(n}).

27

E. Optimization of the terrain-following Boussinesq
system

The expressions (25) and (27) of the effective velocity
and nonlinearity parameters coincide exactly with the ones
(22) and (23) derived from the multiscale expansion of the
terrain-following Boussinesq system. The agreement is
achieved independently of the choice of the depth parameter
vo- In order to establish a similar agreement for the disper-
sion parameter [compare Egs. (24) and (26)], it is necessary
to fix the parameter y,e[0,1]. It is remarkable that it is
possible to find a value of y, which allows for an agreement
of the dispersion parameter for any Va_hle of \f‘?ok, and that
this value does not vary much with \Byk, as seen in Fig. 3.

For small k2, the agreement is achieved for
Yo=y1:=V2/3—1/y5=0.4685.

For large Bok?, the agreement is achieved for
Yo=Y2:= \;"1 /3 = 0577

In general, the value of the depth parameter y, that should
be chosen for equating the values of the effective dispersion
parameters (24) and (26) given by the two models is between
the values y; and y,.

In conclusion, with the particular value of y, plotted in
Fig. 3, the terrain-following Boussinesq system (1) and (2)
and the full potential theory give the same effective KdV
equation in the presence of a periodically varying bottom,
that is, the velocity, the nonlinearity coefficient, and the dis-
persion coefficient are the same.

We have pointed out in the Introduction that the parameter
v of the Boussinesq system has been optimized in the litera-
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FIG. 3. The effective dispersion parameter obtained from the
averaging of the terrain-following Boussinesq system is equal to the
effective dispersion parameter obtained from the averaging of the
Cartesian potential flow theory equations for a particular value of
the depth parameter y, that is the function of VByk plotted in this
figure.

ture in order to get the best agreement between the full po-
tential theory and the reduced Boussinesq model according
to a specific criterion. In [18] a linear version of the reduced
Boussinesq model was used and compared to the linear po-
tential theory model for the multiple-scattering problem of
pulse shaped waves over randomly varying topographies. In
the corresponding linear flat bottom case, and working with
Padé approximations for the full dispersion relation, Nwogu
[11] suggested a numerical strategy for finding the optimal
depth parameter y, regarding phase errors over a waveband
of moderate wavelengths. For the linear Boussinesq model in
the presence of disordered bottom topographies, Mufoz and
Nachbin [18] confirmed numerically that Nwogu’s best value
was indeed y;,=0.469. The agreement for the result of
multiply-scattered waves from both the terrain-following
Boussinesq system and linear potential theory model was
very good. It is remarkable that the present asymptotic analy-
sis confirms this value from a completely different perspec-
tive, giving it a more solid foundation. Here weakly nonlin-
ear waves over a rough topography is considered in the
homogenization limit of vanishing bottom period, as op-
posed to linear waves in a flat bottom configuration. Based
on the present analysis for rapidly varying periodic topogra-
phies, and the numerical evidence provided in [18] for rap-
idly varying random topographies, we can suggest one pa-
rameter value for reflection-transmission of coastal waves in
the presence of fine features. Namely, the optimized terrain-
following Boussinesq system should be considered:

1 1
N

(28)

u? Bl 1 1
U+ me+a W g_E §+§ u&,:o. (29)

This optimized reduced model has the correct physical prop-
erties in the presence of both rapidly varying periodic and
random topographies.
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FIG. 4. Corrective terms of the coefficients of the effective KAV
equation as a function of VByk.

F. Analysis of the effective KdV equation

In this previous sections, we have obtained explicit ex-
pressions for the coefficients of the effective KdV equation
that are the average velocity, the nonlinearity, and dispersion
coefficients. In this section, we will use these expressions in
order to discuss the impact of the periodic topography on the
wave propagation.

In [9] the authors obtain implicit expressions for the ef-
fective KdV coefficients by a multiscale expansion technique
of the water wave Hamiltonian and they compute numeri-
cally these coefficients in order to study their dependence
with respect to the modulation amplitude n;. In these numeri-
cal simulations the modulation period and the depth of the
channel are fixed to 1, so that \Byk=2 within our notation.
Therefore, the dependence of the coefficients of the KdV
equation with respect to \"E)k is not discussed. This param-
eter in the original physical variables is 27 times the ratio of
the mean depth over the period of the bottom. Our explicit
results, valid for small n;, allow us to exhibit that tl£ effec-
tive coefficients v*, ", and 8" strongly depend on v Byk. The
corrective terms, which are the terms of O(nf) in Eq.
(25)—(27), are plotted in Fig. 4. The average velocity is al-
ways reduced (v°<1), which was already mentioned in
[8.9]. The nonlinearity coefficient is enhanced ("> ay). The
dispersion coefficient can | be reduced or enhanced, depend-
ing on the value of \Byk. If \Byk<(=)arctanh!*(6/11)
=(.78, then 8" > (<)p,.

When Bk? is large, we have 8" = ,BO—Sn%,Bg/ %k/4 and the
dispersion is reduced.

When Byk? is small, we have 8" = B,+3n2/(2k?) and the
dispersion is enhanced. Note that, if we start with an evanes-
cent dispersion parameter 3, then the effective dispersion
parameter 8" =3n?/(2k?) is positive. This phenomenon has
already been encountered in the literature in different con-
texts. In particular, apparent dispersion was seen for linear
elastic waves [26] and for nonlinear elastic waves in a peri-
odic composite [27].

VI. CONCLUSION

In this paper we have performed a multiscale analysis of
the full potential flow model for water waves over a rapidly
varying periodic bottom and another one for a family of
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reduced Boussinesq models parametrized by a depth param-
eter. We have shown that it is possible to fit the depth pa-
rameter so that the limit KdV equations obtained from the
two models agree. This serves to justify the use of the Bouss-
inesq system for a wide range of bottom topography, and to
strengthen the value of the depth parameter exhibited by
Nwogu [11].

We have explicitly computed the coefficients of the effec-
tive KdV equation in the case of a small-amplitude sinu-
soidal topography profile and we have exhibited some inter-

PHYSICAL REVIEW E 76, 046311 (2007)

esting features regarding the effect of the periodic bottom on
surface wave propagation. In particular, the velocity is re-
duced, the nonlinearity is enhanced, and the dispersion can
be reduced or enhanced depending on the ratio of the mean
depth over the period of the bottom.
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